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NORMAL IMPACT OF AN INFINITE ELASTIC-PLASTIC
BEAM BY A SEMI-INFINITE ELASTIC RODf%

S. RANGANATH] and R. J. CLIFTON§

Division of Engineering, Brown University, Providence, Rhode Island 02912

Abstract—Solutions are obtained for the problem of normal impact of an infinite elastic—plastic beam by a semi-
infinite elastic rod. The effects of rotatory inertia and shear deformations are included in the equations governing
the motion of the beam. A strain rate independent model based on concepts similar to those employed in quasi-
static plasticity is used to describe material behavior. The interaction between moment and shear force is included.
A strain hardening criterion is used based on the quasi-static moment—curvature relation for pure bending.
Strain-time profiles computed using this theory agree reasonably well with those obtained in experiments on
aluminum beams. The computed soluttons are also compared with predictions based on a rigid perfectly plastic
beam theory.

1. INTRODUCTION

THE response of structural systems to dynamic loading of sufficient intensity to produce
plastic deformation is a subject of considerable technical importance. Structural elements
such as beams and plates are often subjected to impact loading which produces flexural
waves. Although considerable work has been done in the field of elastic waves in bending,
few attempts have been made to study flexural waves in the plastic range. The study of
plastic bending waves is more complex than that of plastic longitudinal waves because
bending waves involve geometric dispersion and also combined stresses. The need to deal
with stress resultants such as moment and shear force rather than the stresses themselves
makes plastic bending waves inherently less amenable to analysis than is the case for other
examples of combined stress plastic wave propagation such as that of combined longitudinal
and torsional plastic waves.

Some of the difficulties associated with the analysis of plastic bending waves have been
avoided in previous investigations by using Bernoulli-Euler beam theory, assuming a
rigid, perfectly plastic characterization of the moment curvature relation, and neglecting
the effect of the shear force on the value of the full plastic moment. The use of Bernoulli-
Euler beam theory neglects the effects of rotatory inertia and shear deformation and leads
to equations of parabolic type for which discontinuities in the solution are propagated at
infinite speeds as is the case for solutions of the heat equation. If the equations are modified
so as to include the effects of rotatory inertia and shear deformation as in the Timoshenko
beam theory, then the system of equations becomes hyperbolic and discontinuities are
propagated along characteristics at finite speeds. The assumption that the material is
rigid, perfectly plastic neglects elastic deformation, strain hardening and the effects of
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strain rate sensitivity. This assumption leads to major simplifications in the analysis of
dynamic problems.

Considerable work has been done on comparisons of experimental results with pre-
dictions based on the rigid, perfectly plastic theory. Parkes [1-3], Bodner and Symonds
[4, 5] and Florence and Firth [6] obtained the final deflection and rotation of beams
experimentally, by subjecting beam specimens made of mild steel and aluminum alloys to
transverse impact. The general conclusion from their studies was that the application of
rigid, perfectly plastic analysis predicted final deformations almost twice as large as the
experimental values in all the cases. Parkes, and Bodner and Symonds explained these
discrepancies as being due to neglect of strain rate effects in the rigid plastic analysis.
This explanation appears to be questionable for the case of tests on specimens made of
6061-T6 aluminum alloy since uniaxial stress—strain data [7] on this alloy shows very
little dependence on strain rate. Besides, Florence and Firth concluded from their work
that the discrepancies between the predicted and observed deformation magnitudes stem
from the secondary effects like neglect of strain hardening and elastic deformations. Thus,
there is need for further study of the problem in order to fully distinguish the roles of strain
rate sensitivity, elastic deformation, strain hardening and plastic shear deformation. A
critical review of these experiments is given by Symonds in his survey reports [8, 9].

Bohnenblust {10] solved the problem of constant velocity impact of a long elastic
plastic beam using Bernoulli~Euler beam theory. Although this problem is in some respects
artificial and impractical, Bohnenblust’s solution is significant because it is the only
complete and “exact” solution (consistent with the use of Bernoulli-Euler beam theory)
of an impact problem for elastic—plastic beams. The predictions from the elastic theory
were investigated experimentally by Vigness [11]. The strain at the impact point was
predicted with reasonable accuracy by the Bohnenblust analysis. However, the assumed
boundary condition of a step-function time dependence for the transverse velocity at the
midpoint is difficult to realize exactly in the laboratory and exact agreement should not be
expected. Apart from difficulties associated with the boundary condition, the analysis based
on Bernoulli-Euler beam theory cannot be expected to be realistic at early times and near
the wavefront as the effective wavelengths are comparable to the beam thickness. At the
point of impact the predicted shear force is infinite initially ; also, three dimensional effects
are important in the neighborhood of the concentrated load. A more exact solution would
require the use of the Timoshenko beam theory which includes the effects of rotatory
inertia and shear deformations. Conroy [12] used the Bohnenblust analysis to solve the
problem of constant velocity impact of infinite rigid plastic beams. He showed that for
rigid, perfectly plastic beams the deformation is characterized by a fixed plastic hinge at
the point of impact and a travelling plastic hinge.

Wilshaw and Kelly [13] investigated experimentally the response of a clamped circular
plate to a rectangular stress pulse. They found that the elastic response of the plate was
predicted well by classical thin plate theory. The plastic behavior was analyzed by assuming
the material to be rigid visco-plastic and the predicted value of the final deflection was
shown to be in substantial agreement with the experimental data.

We present here an investigation of the problem of normal impact of an infinite elastic—
plastic beam of rectangular cross-section by a semi-infinite elastic rod. The effects of rotatory
inertia and shear deformations are included in the equations governing the motion of the
beam. A strain rate independent model based on concepts similar to those employed in
quasi-static plasticity is used to describe the material behavior. The interaction between
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moment and shear force is included. A strain hardening criterion is used which is based
on the quasi-static moment—curvature relation for pure bending. The predicted strain
response of the theoretical model is compared with the experimental strain response at
different positions on the beam and for different velocities of impact.

2. EQUATIONS OF MOTION AND THE PROBLEM

The experimental set-up and the loading condition are similar to those described in
[14,15]) except that here the impact velocity V,, can be large enough to cause plastic deforma-
tion in the beam. Although plastic deformation occurs we assume that deformations are
sufficiently small so that the assumption of infinitesimal strains and small deflections is
applicable.

The equations of motion are the same as in the elastic case [14]. Thus,

Q+M, = ply, (2.1a)
Wy = Qx (2.1b)

where
x = distance from the center of the beam where impact occurs;
t = time from the instant impact occurs;
M = bending moment;;
Q = shear force;
n = transverse displacement
Y = angular rotation of the cross section of the beam ;
p = mass density of the material of the beam;
I = moment of inertia of the cross section ;
u = mass per unit length of the beam.
The relations between the generalized displacements n and s and the generalized
strains y and k are

Nne=yY =7y (2.2a)

Y, =k (2.2b)
where
y = shear strain;
K = curvature.

The generalized strain rates k, and y, are assumed to be the sum of an elastic part and a
plastic part. Thus we obtain,

K, = Kf+x7 (2.3a)
Yo=Y+ (2.3b)

where the superscripts e and p refer to the elastic and plastic parts, respectively.
For an elastic material, the elastic parts in equation (2.3) are given by

1
" EI

¥ = K@ (2.4b)

€
K!

M, (2.4a)
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where
K = k'4,G where
k" = shear coefficient ;
A, = cross sectional area of the beam
G = shear modulus;
B = EI = flexural rigidity of the beam.

Il

In order to determine the plastic deformations, a criterion is necessary to decide when
plastic flow occurs in the beam. This is accomplished by specifying a yield surface in the
moment—shear space. The choice of a yield surface in bending presents difficulties as we
have to deal with stress resultants like moment and shear force rather than the stresses
themselves. As Drucker [16] points out, it is not possible to determine the values of bending
moment and shearing force which produce a condition of full plasticity at a particular
cross section without considering the geometry and the loading of the entire beam. Thus,
for a given cross section there does not exist a unique interaction curve in moment-shear
space which corresponds to the locus of states at which plastic flow commences. Never-
theless, the introduction of an approximate moment-shear interaction curve is useful as
long as we recognize that it is by no means unique or exact. To this end we assume that the

initial yield surface is given by
M 2n ( Q )Zn
— +{=] =1 2.5)
(M 0) Qo

where

M, = yield moment in simple bending = ¢,bh?/6;

Qo = yield shear force = % aobh/0;

o, = yield stress in uniaxial tension;
b = width of the cross-section of the beam;

h = thickness of the beam
_ {\/3 for the von Mises criterion of yielding ;

2 for the Tresca shear criterion ;
n=123,....
By assigning different values for n ie. n = 1,2,3,..., the shape of the initial yield surface
can be changed and the effect of the yield surface on the solution can be studied. As plastic
deformation takes place the stress resultants Q, M are assumed to lie on the loading surface
given by

3 M 2n Q)Zn JZM—O 26
/(M.0) ( MO) + ( o (26)
where J is a yield parameter which depends on the extent of strain hardening. Subsequently,
J will be assumed to be a function of the plastic work density W?”. The determination of
J(W?) from results of a plastic bending test can be obtained from equation (2.13).

Although the shape of the yield surface has been selected in a rather arbitrary manner,
later it will be shown that the numerical results are not very sensitive to the shape selected
so that the nature of the yield function chosen is not critical.

We assume that the plastic strain rate vector is normal to the yield surface in the
moment-shear space. This assumption, is analogous to that of requiring the material
behavior to satisfy Drucker’s stability postulate [17]; however, it does not follow directly
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from this postulate due to the non-existence of a unique yield curve in the moment-shear
space as discussed previously. Thus we have,

o1 Y
K=o (2.7a)
Y

where 1 is a positive scalar function to be specified subsequently and f(M, Q) is the yield
function.

The derivation of the generalized stress—strain relations outlined here is very similar
to that given by Clifton [18] in his analysis of combined torsional and longitudinal waves
in a thin walled tube. We adopt a hardening law similar to the isotropic work-hardening
model for the case of combined stresses in quasi-static plasticity. In the latter model, the
plastic work density is used as the parameter relating the case of combined stresses to
untaxial stress—strain tests. In a similar manner we use the plastic work density to relate
the case of bending under the combined influence of moment and shear force to the case
of pure bending under the action of moment alone. There is little information available on
hardening in bending and thus the choice of an “isotropic’” hardening theory, although
reasonable, is quite arbitrary. Its use can be justified only on the basis of the agreement
of the theoretical results to experimental data.

The plastic work rate is given by

WP = MkP+ Q9P (2.8)
Assuming that J in (2.6) is a monotonic function of W? we can write

dw?r

Wb = —d}“.],. (2.9)
Then from (2.6)+2.9) we obtain

,  dw? J

A= 37 m (2.10)

In analogy with the example for combined stresses [18] we use the case of pure bending to
determine the function W#(J). If M = M(x) is the moment~curvature relation in pure
bending, an increment in the moment dM is related to the increment in the elastic curvature
dk® and the increment in the plastic curvature dx? by

M
dM = %;(d;cewtdk”). 2.11)

If the slope of the moment—curvature curve is expressed as a function of the moment i.e.
dM/dk = g(M), we have

dM dW"} (2.12)

dM = g(M){7+ 7

since dx® = dM/B and dW? = Mdk? for pure bending. The yield condition reduces to
M = M,J for pure bending and using this in (2.12) we have

awr 1 1
= MOJ{M-E}. (2.13)
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Using equations (2.13), (2.10), (2.7) and (2.4) in (2.3) we have

Mt+ 1 1 l M 4n—2M MZn—lQZn—l 214
K, = — —_— JRE— _— =
t B J4n~2 g(MOJ) B Mo t+ M(Z)n—zQ(z)n Ql ( a)
Ql 1 Mé 1 1 MZn—lQval Q 4n—2
=— — —— M - . .
FERT e B My g, O B4
From (2.2) we have
o, = K,
(2.15)
vy—w =7,
Substituting (2.14) in (2.15) we have
N M,—o,+HQMQ, =0
(2.16)

N,Q,—v ., +w+HQMM, =0

where

e 1 11
O ME2"=2 |g(MoJ) B’

1 2n
N, = A+H*(&) M#n=2;

B M,
1 MO 2n
N - H* -9 4n—2;
2 K+ (Qo) Q

H = H*MZ"_ZQZ"_Z.

When the loading is in the elastic range, H is equal to zero and the equations reduce to
the familiar elastic equations. Equations (2.16) along with (2.1) constitute a system of four
first order partial differential equations for the functions M, @, w and v. We seek a solution
of these equations which satisfies the initial conditions

w(x,0) = v(x,0) = M(x,0) = Q(x,0) =0 (2.17a)

and the boundary conditions (see Refs. [14, 15])

(0.1 =0 (2.17b)

2000, ¢t
Q; )+pr£‘v(0a t) = _préVO(z)

where

¢ = \/ (—') = velocity of propagation of longitudinal waves in the rod;

Dy
A = area of the rod;
E, = Young’s Modulus of the material of the rod;
p, = mass density of the material of the rod.
The boundary condition (2.17b) makes use of the assumption that the wave propagation
in the rod can be described by the elementary one dimensional theory for elastic rods.
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3. CHARACTERISTIC PROPERTIES OF THE EQUATIONS

Equations (2.16) and (2.1) can be written in more compact form by introducing vector
notation, as follows

L(w) = Aw,+Bw, +Cw =0 (3.1)
where

w pl 0 0 0

M 0 N, 0 HQM
W = A:

v 0 0 U 0

0 0 HQM 0 N,
0 -1 0 0 0 0 0 -1
-1 0 0 0 0 00 O

B = C =

0 0 0 -1 0 0 0 O
0 0 -1 0 +1 0 0 O

Equation (3.1) constitutes a system of quasi-linear symmetric hyperbolic equations of
first order. In the special case when the loading is elastic, the system becomes linear as
N, and N, reduce to constants. The theory of quasi-linear symmetric hyperbolic equations
is given in [19].

The characteristic velocities for (3.1) are the roots of the characteristic equation

det(cA—B) =0 (3.2)
which can be written as
pIuN 3¢* —(pIN [+ pN,)c2 +1 = 0, (3.3)
where
N3 = N,N,—(HQM)>.
The roots of (3.3) are

2 = (PIN 4+ uN,)+/[(pIN  + uN,)* —4pIuN;)
2pIuN, '

(3.4)

The faster wave speed c, is obtained by taking the + sign and the slow wave speed c, by
taking the — sign. For the elastic case, ¢, corresponds to the velocity of propagation of
longitudinal waves ¢, = \/(B/pI) while ¢, corresponds to the velocity of propagation
of shear waves ¢, = \/(K/p). The characteristic curves are the four families of curves in
the t—x plane which satisfy

dx dx

FriiEdd and 4 = 6 (3.5)
For each characteristic velocity ¢ there is a corresponding vector 1 which is a null vector
of the characteristic matrix C = (c4 — B) (i.e. 1 satisfies C1 = 0). The four null vectors so
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defined are linearly independent. The null vectors for the positive wave velocities are
given, to within an arbitrary scalar multiplier, by

[ HoMc, ]
—plc;HOM
1 Ic N d
IF = = PR e S +¢f (3.6a)
Her U dt ’
—1+plciN,
1 ueN, T
ple, ol
ueIN,—1
. dx
i = for i +c,. (3.6b)
HQMc,
—~uc?HQM
The null vectors [ and [ corresponding to characteristics dx/dt = —c,and dx/dt = —c¢;

are obtained by substituting — ¢, for ¢, and — ¢ for ¢,in (3.6). A jump in the normal deriva-
tive of w across a characteristic curve is proportional to the corresponding null vector.

The interpretation of characteristic curves that is important from the point of view of
numerical analysis is that along these curves, the partial differential equations reduce to
ordinary differential equations. The ordinary ‘differential equation associated with a
characteristic for which the corresponding null vector is I is given by I. L(w) = 0 where
the dot denotes the Euclidean inner product. Substituting (3.6) in the above equation we
obtain

d
(AM ~ plc dw)+aldQ — pc ,do}+(Qc; +uctwxydt =0 for d~): = +¢5 {3.7a)

B(dM — plcdw) +(dQ — pe,dv) +(ucw + Qc f)dt = 0 for % = +¢,  (3.7b)

where
1 pIN,
uct HOM —pl
_Mg ok HOM =l (38)
HQOM I uN, H
plez  pl
and
1 uhN,
12 pl HOM —
p=tt P Q B (3.9)
HOM 1 pIN, pl
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The incremental relations along the characteristics dx/dt = —c¢, and dx/dt = —c, are
obtained by replacing ¢, and ¢, by —c, and —c;, respectively, in (3.7). For the familiar
example of elastic loading of the beam, the characteristic relations (3.7) reduce to

d
dM —plc,dw+Qc, dt = 0; EZEZ +cy
(3.10)
) dx
dQ— uc, dv+ ucso dt = 0; @ +c,.

The coeflicients a and f in the incremental relations (3.7) need special consideration for
stress states on the moment axis and on the shear axis. The cases M = 0 and Q = 0 are
considered separately.

Case(a): M =0
In this case the expressions for the wave speeds reduce to

;=0

o )

From the second expression for a in (3.8) it follows that both « and f are zero. Thus, the
incremental relations reduce to

d
(dM—plc; dw)+Qc,dt =0 for 5: ¢ (3.11a)

d
(dQ— pe, dv) + pc2w dt = 0 for di: -, (3.11b)

Case (b): Q =0

In this case we consider separately the intervals M, < |M| < M and |M| > M, where
M is the moment for which the wave speeds ¢ rand c;are equal. The moment M corresponds
to the point on the moment—curvature curve where the slope is equal to pIK/pu.

For the interval M, < [M| < M the expressions for the wave speeds reduce to

o= Yl

Csg = Csy.

In this interval it can be seen from the second expression for « that both « and f are zero
so that the incremental relations are still given by (3.11).
For |M| > M, the wave speeds are given by

Cf=C2

.= o)
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From the first expression for « in (3.8) it is seen that « and § become infinite for this case.
To avoid this difficulty we rewrite the incremental relations as follows

a*(dM —plc, dw)+(dQ — uc, dv)+(Qc a* + pucjw) dt = 0 for % = +¢; (3.12a)
and
(dM — plc, dw)+ pHdQ — e, dv) + (uciwp* +Qc)dt = 0 for ‘;—’; = +¢, (3.12b)
where
o = 7.% and f* = _;up_la*' (3.13)
ue;ou

From (3.13) it follows that for ¢ = 0 and |M| > M the coefficients a* and $* reduce to
zero. Then the incremental relations simplify to

d
(dQ — pc, dv)+ pcfw dt = 0 for d—j = +¢; (3.14a)

d
(dM — plc,dw)+Qc,dt = 0 for ai: —_—— (3.14b)

In order to facilitate numerical computations the moment—shear space is divided into
two regions (see Fig. 4). In region I the incremental relations given in (3.7) are used whereas
in region II the incremental relations given in (3.12) are used. In this way the coefficients
used in the computations always remain bounded.

4. NUMERICAL SCHEME

The difference method adopted here is a second order accurate extension of the method
proposed by Courant et al. [20]. The method is second order accurate in that if the solution
were known at some time, the error introduced during the next time step Ar would be
0(At3). Proof of convergence of the method as well as a discussion of its computational
advantages relative to other second order accurate methods has been given by the
authors [21].

The mesh points chosen for numerical integration of the incremental relations (3.7)
are the intersections of the lines x = (K—1)Ax and t = (I—1)At for K = 1,2,... and
I =1,2... where Ax and Af are the increments in x and ¢, respectively. Let the discrete
functions &, M, 0, ? and J correspond to the functions w, M, Q, v and J respectively, at the
grid points. We have two kinds of grid points to consider—boundary points which are grid
points on the line x = 0 in the x—t plane; interior points which correspond to the other
points. The difference method presented here ¢nables us to compute the solution at a
mesh point on the line t = t,+ At knowing the solution w on the line = {,. At an interior
point we integrate along the four characteristics through the new mesh point on the line
t = to+ At to obtain the solution at this point. At a boundary point, we integrate along
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the two backward characteristics with negative slope and use the two boundary conditions
to evaluate the solution at the new mesh point on the line t = t,+At.

Consider the calculation of the solution at a point P on the x—t plane from data known
at mesh points @ _, Q and Q , (Fig. 2). The four backward characteristics intersect the line
t = (I—1)At at points Q,, Q,, Q5 and Q,. The ratio At/Ax is chosen equal to 1/c, where
¢y = /(B/pl). Since ¢, < ¢,, all the points Q;, i = 1,2, 3, 4 lie between Q_ and Q.. Thus
the point P lies within the domain of influence of the line Q _Q , . This satisfies the require-
ment of convergence and stability outlined in [22].

We integrate the incremental relations along the characteristics from the point P to
the intersection with the line t = (I — 1)At. The incremental relation along the ith character-
istic is of the form

4

Y ofdw)+Bdt=0 i=1,234 @.1)

ji=1

where (dw)); is the increment in the jth component of the solution vectors along the ith
characteristic. The coefficients a;; are constants for the elastic case ; but for the plastic case
they are dependent on the vector w. The term B, is dependent on the solution vector in
both the cases. For the elastic case, integration of (4.1) yields

4

A
Y a9 P) = hAQI+BLP)+ BQNS = O @2)

ji=1

where

+2- (0 4)—20(Q) +W(Q-)}

+(—Q+;Q‘),1,..

For the plastic case we use a two step integration routine. In the first step, we assume
the coefficients to be constant and solve for w. This solution is then refined in the next step.
The intermediate solution w’ is given by the equation

WAQ) = WAQ)+ gi(M)

where

4
Y. 4@ {W(P)—W(Q)} + B{Q)Ar = 0. (4.3)

i=1

We use the intermediate solution to evaluate the average value of the coefficients «;; and
B; denoted here by &;; and B,

u - Z{au(P W(P))-i-a,j(Q,,W(Q ))}
B: = 3{BAP, W(P)+ B(Q;, W(Q,)}.

The final solution is then given by the equation

4 4
), &AW, = ; &u{ (_(Q)_zw@) ~( (Q)— A(Q)+W(Q—))} —BAr (44)

i=1
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where
AWw; = W{P)—W{Q). (4.5)

Equations (4.4) constitute a set of 4 equations involving data at mesh points Q. ,
© and Q_ and they can be solved to give the increment in the solution AW and hence the
solution at an interior point P. At a boundary point, 2 equations similar to (4.4) together
with the two boundary conditions (2.15) yield the final solution.

In wave propagation problems of this type, loading and unloading takes place along
the beam. Thus both elastic and plastic regions occur so that it is necessary at each point
to decide whether the equations for elastic or plastic regions are to be used. The procedure
adopted for this choice is as follows:

1. After each calculation, the function J = [(M/Mg)*"+(Q/Q,)*"1'/*" is calculated.
If J > Ja then J,,,, is updated to the value J. J,,,, is initially set equal to unity.

Before computing the solution at a new point P, thefunction J at the point Q is calculated.
If J(Q) < J,..,(Q) then equations for elastic regions are used. If J(Q) = J_,(0Q), then
equations for plastic regions are used.

2. If the new value of J at P confirms the choice made in (1), we move to the next point.
If not, the alternative choice is taken and a new evaluation of the solution at P is made.
If this satisfies the second choice we proceed to the next point.

3. If neither choice is satisfactory, then the cells adjacent to such points are subdivided
into sixteen cells each. Second order accurate interpolation is used to compute the solution
atthe new mesh pointsattimet = t,. With the smaller mesh size, we follow the same scheme
as explained in (1) and (2) except that we do not check for the second alternative as before.
This procedure of reducing the mesh size was introduced because experience showed that
various averaging procedures used for such points led to large errors in the computed
solution. With the reduced mesh size the magnitude of the errors introduced is greatly
reduced.

Special attention must be given to the computation of the numerical solution at mesh
points where the stress state is near Q = 0, M = M in the moment-shear space. At such
points it is possible that the coefficient &;; in equation (4.4) would be obtained by averaging
the value of «;; corresponding to points in regions I and II (Fig. 4). This would lead to an
incorrect solution since the coefficients are defined differently in these two regions. This
difficulty was avoided by computing the solution at such transitional points by means of
the first order accurate system of equations, equations {4.3), in which the coefficients are
all evaluated at one point. Since such cases arise at only a few points, the numerical results
are still, essentially second order accurate.

A measure of the error between the numerical solution and the actual solution of the
differential equations is useful in judging the accuracy of the numerical resuits. Such a
measure is obtained by checking the energy balance in the system, i.e. the work input to
the system must equal the sum of the plastic work done and the increase in the kinetic
energy and the elastic strain energy of the system. The actual solution w satisfies the equation

Jf w-Lw)dxdt =0 {4.6)

where L{w) is the operator defined in {3.1). Equation (4.6} can be reduced to

fl(p1w2+m~2+M2+Q2) dx+ H Mz( : I)J dJ dx J {(Mo+Qu)l, o} dt
5 e 0 T =1 71 Mx=0y5 Al
2 B K g(MyJ) B .7)
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Equation (4.7) is recognized as a statement of energy balance of the system. The first term
on the left hand side represents the sum of the kinetic energy and the elastic strain energy
of the system while the second term represents the total plastic work done. The term on the
right hand side represents the work supplied to the system. We now define the “error’ in
numerical computation as follows:

“total” energy — work input

E = 4.8
rror work input (4.8)

where “total” energy and work input are, respectively, the left and right hand sides of (4.7).

5. EXPERIMENTAL PROCEDURE

The experimental set-up is described in detail in [15] (see Fig. 1). The striker bar on
impact with the loading bar transmits an approximately rectangular pulse of 100 usec
duration, through the loading bar. The pulse is reflected at the interface between the loading
bar and the beam. The loading bar and the beam are sufficiently long so that no wave
reflections occurred during the first 100 usec after impact. The loading bar (3 in. diameter)
is made of hardened steel with a yield stress of over 100,000 psi so that the strains in the
rod remain in the elastic range. The ends of the loading bar were rounded slightly so that
the load was transmitted to the beam on a smaller area. The incident stress pulse in the rod
had a rise time of approximately 10 usec. This was accounted for, in the theoretical solution,
by considering a parabolic rise in the function V() with the full velocity ¥V, being reached
after 10 usec.

The material of the beams used in the experiments was chosen to be an aluminum alloy
in order to minimize the effects of strain-rate sensitivity. The particular alloy chosen
(6063} was selected because of its availability in convenient sizes and its low yield strength.
The use of a soft material enables us to use moderate impact velocities and still obtain
plastic strains which are large relative to the yield point strain so that the plastic flow
characteristics of the material are of primary importance in determining the response of
the beam.

The 6063 alloy of aluminum has the following nominal chemical composition [23]:

TabLE |
Silicon Magnesium Aluminum
(%) (%) (%)
04 07 989

The bar stock in the T3 state has a tabulated tensile yield strength of 21,000 psi [23]. The
specimen used was 7% in. thick, 4 in. wide and 38 in. long. It was annealed to reduce it to a
state of zero temper with a yield strength of 3000 psi. In the annealing process, the tempera-
ture is raised to 750°F in approximately 6 hr and held at that temperature for 2 hr. The
specimens are then brought down to a temperature of 500°F at the rate of 50°F/hr and
finally left to cool in the oven. For each beam specimen tested dynamically, two short
specimens cut from the region of stock material adjacent to the ends of the beam specimen
were used for quasi-static stress—strain tests. These short specimens are 8 in. long and go
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through the same annealing as the long beam specimens. Quasi-static stress—strain tests
were conducted on these annealed sample specimens using an Instron Universal testing
machine. From this stress—strain curve, the corresponding moment—curvature relation is
obtained as follows.

B2
M = 2J obzdz (5.1)

0

where
h = thickness of the beam ;
b = width of the beam.
Writing z = ¢/k where ¢ is the strain in a fiber at a distance z from the neutral axis and
K is the curvature we have
2b xh/2
M= o(e)e de (5.2)
K~ Jo
where o = a(¢), a function of the strain.
If &, is the yield strain (5.2) becomes

[ Eed 2 2
M::[—@+f dgumJ brk>4%

K3 3

€0

2
M=ﬂxmms%9 (5.3)

knowing ¢ = a(¢) from the stress—strain data, the moment corresponding to a specific
value of the curvature can be obtained. Simpson’s rule was used to evaluate the integrals
in (5.3). For the numerical calculations presented here, an empirical moment—curvature
relation was obtained to fit the experimental values.

M-M
(ko) = (~E,—°)+ D(M —M,) (5.4)
where
M = bending moment; M = yield moment ;
K = curvature; Ko = yield curvature.

D and C are constants obtained by using the method of least squares to minimize the
difference between the experimental values and the empirical fit. Figure 3 shows a com-
parison of the moment—curvature curves obtained from experimental results and the
empirical relation. It is seen that the empirical relation fits the experimental curve fairly
well. Stress-strain tests were conducted on each batch of specimens and an empirical fit
was obtained for beam specimens belonging to that batch. Typical values for the constants
in (5.4) for one batch of specimens are given here:

E = 102x10° psi;
I =0276x1073in.*;
My, =7811bin.;
Ko = 0276 x 107 %in." !;
D = 0267 x 10™%;
C = 2-84.
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The yield moment M, was taken to be that value of the moment where the first deviation
from linearity was observed in the quasi-static curve. Foil strain gages (BLH type FAE-12-
12813L and FAE-12-12PL) with { in. gage length were used to record the strain in the beam.
The latter variety is of the post yield type but both gages can take strains up to 5 per cent
without loss of linearity. The post yield gages were used at points closer to the point of
impact where there was substantial yielding. The strain gages were bonded to the beam
using EPY 150 cement and the bond was cured for 24 hr before the gages were used.
A similar gage of §in. gage length was used to record the strain in the rod. A constant
current strain gage circuit is used to make dynamic strain measurements in the beam.
The strain output was calibrated by switching a known resistance in parallel with the
strain gage to produce an apparent strain and the manufacturer’s gage factor was used
to convert the observed change in voltage to an equivalent strain. The strain profiles were
displayed on a Tektronix 556 dual beam oscilloscope and pictures of the traces were
taken using Polaroid type 46 film. The oscilloscopes were triggered using a piezoelectric
crystal phonograph cartridge which was mounted on the loading bar. The needle of the
cartridge rests lightly on the loading bar and is excited laterally when a stress pulse
passes it. The output of the crystal is sufficient to trigger the oscilloscopes without difficulty.
Figures 5(a)-(f) show a few pictures of the oscilloscope traces at different positions along
the length of the beam for different velocities of impact.

In the first series of tests the strain response was obtained at distances x = 4, 1, 13, 2
and 24 in. from the point of impact on the beam. Measurements were also made of the
incident and reflected waves in the rod. The strain responses at different positions along
the beam in general correspond to different velocities of impact as separate experiments
were done for each case.

In the second series of tests, the strain-time profiles were obtained at one position
x = 13in. for different velocities of impact. This enables a comparison with theoretical
results for higher impact velocities where plastic strains predominate.

As a check on the assumption that the middle surface of the beam is unstrained, strain—
time profiles for the upper and lower surfaces were compared. Typical results are shown



Comparison of surface strains at the top V, = 3337/sec
and bottom surfaces Strain calibration: Beam x=13* 0-071%/cm
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Strain calibration: x=1" 0-07€ %/cm  gtrqin calibration: Beam x= 15" 0-072%/cm
x=2" 0-049%/cm Rod 0-042%/cm

V, =3407sec V, =6007sec
Strain calibration: x =3" 0044%/cm Strain colibration: Beam x -I%" 0'158%cm
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FIG. 5. Strain-time profiles.
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in Fig. 6. Since the strains at the two surfaces are essentially equal in magnitude but opposite
in sign, the middle surface strain is small-—say less than 2 per cent of the surface strain—
and can safely be neglected.

-0.135 |-
TOP SURFACE
-0.090 |-
f_0045 | DIFFERENCE BETWEEN
= OQUTPUTS OF TOP AND
z BOTTOM STRAIN GAGES
(&]
B o B AT et S
a ~ " 20 40 60 80 100
5 TIME pus —»
@
F 0045
w
0.090 [
BOTTOM SURFACE
0.135

F1G. 6. Comparison of surface strains at the top and the bottom surfaces.

6. COMPARISON OF THEORY WITH EXPERIMENT

Numerical solutions of equation (3.1) have been obtained for impact velocities cor-
responding to those used in the experiments. For these calculations, the exponent n in
the equation of the yield surface [equation (2.5)] was taken to be unity; comparisons of
these results with the case n = 2 indicate that the solutions are relatively insensitive to the
value of n. The effect of changing n is discussed in more detail later in this section. The
solutions yield directly the values of M, w, Q and v at mesh points. The surface strain in
the beam has been obtained by integrating equation (2.14a) for the curvature rate and using
the relation ¢ = xh/2. The transverse velocity has been integrated with respect to time to
give the transverse displacement.

For all the numerical solutions presented here, the mesh size has been taken sufficiently
small for the “error” in the energy balance to be kept less than 2 per cent throughout the
calculations. The mesh size used was Ax = 0-05 in. and At = 0-25 usec.

The experimental and theoretical strain-time profiles are compared in Figs. 7-11.
The theoretical predictions appear to be in reasonable agreement with experimental
results with the agreement improving with distance from the point of impact. The closer
agreement at more distant stations is similar to that observed in the study of elastic bending
waves reported in [15]. The large discrepancy between theory and experiment shown in
Fig. 7 is believed to be due in part to the slope of the empirical moment—curvature curve
being a poor approximation to that of the actual moment-curvature curve for curvatures
in the neighborhood of yield. This explanation is based on the observations that (i) the
experimental strain—time profile in Fig. 7 lies between that computed from the empirical
moment—curvature relation and that computed assuming elastic behavior (cf. Fig. 14)
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F16. 11. Comparison of theoretical and experimental strain-time profiles at x = 24 in.

and (ii) the slope of the quasi-static moment—curvature curve lies between that of the
empirical curve and the slope EI associated with the elastic response. Calculations for
V, = 333 in./sec. (Fig. 9) for which the empirical moment-curvature curve was made to
fit the experimental curve closely for small curvatures resulted in a strain-time profile for
x = }in. that was considerably closer to that observed in experiments than is the theoretical
curve shown in Fig. 7 (e.g. ¢ = —0-03 per cent at t = 60 usec.). However, there is no change
in sign even at later times ; and it does not appear that adjusting the empirical relation can
lead to a change in sign at a time of approximately 50 usec as observed in the experiments.

Figure 12 shows a comparison of the theoretical and experimental strain—time profiles
at x = 14 in. for three different impact velocities. These results correspond to the same
batch of specimens with the same empirical moment—curvature relation. At higher impact
velocities, the theory predicts a lower peak strain than is observed in the experiments.
No satisfactory explanation has been found for this discrepancy.

The effect of increasing the strain rate in most metals is to increase the yield stress and
raise the level of the stress-strain curve from that of the quasi-static stress-strain curve. In
order to investigate the effect of higher strain rates, numerical solutions were obtained for the
case where the yield moment M, and the yield curvature x, in equation (5.4) was increased
by 50 per cent. This raises the moment-curvature curve and thereby introduces an effect
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which is similar to that due to high strain rates. Figures 13-17 compare the computed
strain—time profiles corresponding to the raised moment—curvature curve with those
calculated using the original quasi-static moment—curvature relation. In general the
effect of increasing the yield moment was to improve the agreement between theory and
experiment—especially at x = Jin. and x = 1 in. However, for the aluminum alloy used
as the beam, strain rate effects are unlikely to cause an increase in the yield moment by
anywhere near 50 per cent and even with such an increase, there is only a slight improvement
in the agreement between theory and experiment. A more thorough study of the importance
of strain rate sensitivity could be obtained by comparing the results of the present theory
with the results from a theory based on a viscoplastic model, such as the one used by
Bejda [24]. Figures 14-17 also show the theoretical and experimental strain profiles for
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F1G. 13. Effect of yield stress on predicted strain—-time profile at x = Oin.
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the beam, if the beam were completely elastic. The experimental strain response for the
elastic case shown in Figs. 14-17 was scaled to ¥, = 500 in./sec from measurements for

V, = 80 in./sec.
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The numerical solution was computed for two different shapes of the yield surface

(see Fig. 4) corresponding to values n = 1 and n = 2 in equation (2.5). Figure 18 shows a
comparison of the predicted strain response at different positions along the beam for the
two different yield surfaces. This example corresponded to a velocity of impact V, = 500 in./
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Fi1G. 135. Effect of yield stress on predicted strain-time profile at x = 1 in.
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The comparison shows that the predicted strain response is not very sensitive to the
shape of the yield surface. The greatest discrepancy is at x = 0 where beam theory itself
is of questionable validity ; at distances where beam theory is expected to be a good approxi-
mation the discrepancies are completely negligible. Thus, the shape of the yield surface
does not appear to be critical in predicting the dynamic response of the beam.
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F1G. 17. Effect of yield stress on predicted strain—time profile at x = 2 in.
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Figure 19 shows the elastic—plastic boundaries in the x-t plane for ¥, = 500 in./sec.
There are three distinct plastic regions, the central region corresponding to negative
curvature rate whereas the other two regions correspond to positive curvature rate.
For the range of time considered, the plastic deformation in region 11 is negligible relative
to that in the other two regions. The resulting deformation is similar to that corresponding
to a stationary plastic hinge with positive curvature rate at x = 0 and a travelling hinge
with negative curvature rate as predicted by Conroy’s solution [12] of the problem of
constant velocity impact of an infinite, rigid, perfectly-plastic beam. Although the present
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Mp = M°7 4M,
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FiG. 19. Elastic-plastic boundaries.
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problem differs from that considered by Conroy in several respects, a comparison of the
present solution with that of Conroy is helpful for giving a physical interpretation to the
numerical solutions obtained by means of the theory used here. To this end, the location
of the travelling hinge according to Conroy’s solution is shown in Fig. 19 for three different
values of the fully plastic moment M ,. For M, = 4M, the trajectory of the travelling hinge
according to Conroy’s solution agrees closely with the center line of region II. Since the
present theory includes work hardening whereas Conroy's solution is for a perfectly
plastic material, an appropriate value for M, in Conroy’s solution would be expected to
be greater than M, : however, no intrinsic importance should be attributed to this par-
ticular value of M, which gives good agreement. Again, the purpose of the comparison in
Fig. 19 is to illustrate that region 11 corresponds to a region with negative rate of curvature.

Region I in Fig. 19 corresponds to the stationary shear hinge and bending hinge of
the solution by Karunes and Onat [25] of the problem of constant velocity impact of a
rigid, perfectly plastic, beam with free ends, including the effects of rotatory inertia and
moment-shear interaction. At early times the plastic shear strain rate y? in region I is
dominant; at later times 77 becomes negligibly small and the plastic curvature rate x? is
dominant. Thus, region 1 is initially a plastic shear hinge and subsequently becomes a
plastic bending hinge. This behavior is analogous to that reported in [25].

Figure 20 shows the distribution of plastic strain along the length of the beam for
V, = 500 in./sec at r = 94 pysec. For x in the interval (3-5, 4in.), which corresponds to
region I1I of Fig. 19, the plastic strain is negligibly small. Thus, the plastic zone, region III,
which is not predicted by the rigid plastic theories [12, 25] is a region of extremely small
plastic strains.

One aspect of the loading surface which perhaps warrants further study is the hardening
model which is employed. Examination of the elastic—plastic boundaries in Fig. 19 shows
that some segments of the beam experience plastic flow associated with both positive and
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F1G. 20. Plastic strain at t = 94 psec.
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negative moments. This suggests that inclusion of a Bauschinger effect in the analysis
might be important. Use of a “kinematic”’ hardening model which incorporates this
effect should clarify the situation.

7. CONCLUDING REMARKS

The ratio of the energy dissipated in plastic deformation to the total energy supplied
to the beam is a measure of the extent of plastic deformation in the beam. Numerical results
for high velocity impact tests indicate that over 40 per cent of the energy is converted into
plastic work while less than 5 per cent is stored as elastic strain energy. Kinetic energy
accounts for the remaining part. These figures suggest that material behavior for plastic
flow should be important in predicting strain—time profiles and that the qualitative agree-
ment between the computed profiles and those observed in the experiments indicates that
the model used in substantially correct. However, the experiments are not sensitive enough
to the model used for plastic flow to allow conclusions regarding the details of the con-
stitutive equations to be used for describing plastic behavior. For example, the experiments
do not appear to be sensitive enough to determine the increase in flow stress due to strain
rate effects which for the aluminum alloy used here is expected to be less than 20 per cent.
Thus the experiments and the analysis indicate the nature of the structural response
associated with plastic bending waves but do not give definitive information regarding
the material behavior during plastic flow. The qualitative agreement between the experi-
mental strain response and the theoretical predictions indicates that the analysis presented
here provides a reasonably good description of the dynamic response of aluminum beams
to impact loading. The plastic regions according to the present theory are shown to
correspond roughly to the fixed and moving plastic hinges of Conroy’s solution based on
rigid perfectly plastic beam theory. The deflected shapes predicted by the two theories
were also found to be similar. Thus, although the presence of work hardening in the theory
used here precludes a definitive comparison of this theory with the simpler rigid plastic
theory, it appears that the latter theory is suitable for predicting the main features of the
beam response.

The principal discrepancy between the strain-time profiles obtained from the experi-
ment and those predicted by the theory is the large upward shift of the predicted strain—time
profile at stations near the point of load application, such as shown in Fig. 7 for x = { in.
As mentioned previously this discrepancy may be partly due to poor matching of the slopes
of the empirical moment-curvature curve with those of the experimental curve. Another
reason for this discrepancy appears to be that the station x = 1 in. is too close to the point
of impact for the results of beam theory to be valid. The wave propagation phenomenon
near the point of application of the load is complicated by the presence of plastic loading
waves and elastic unloading waves from reflections at the free surfaces. Plastic waves
being considerably slower than elastic waves suggests that more time would be required
for a sufficient number of reflections to take place for beam theory to become a good
approximation. Also faster elastic unloading waves would tend to overtake the leading
plasticloading waves and reduce the amplitude of the peak strain which occursat: = 15 usec
for x = }in. It is doubtful that these complicated effects can be modeled by an elastic-
plastic beam theory at distances less than three beam thicknesses from the point of impact.
In the elastic region following the first strain peak the change in strain according to the
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theory is very similar to that observed in the experiments. Thus it appears that the theory
over-estimates the early plastic strain peak and that this error in plastic strain is not re-
covered in the subsequent elastic response.
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AOcrpakr—IlonyyaroTca peuleHd Ui 3ajavyd  HOPMAJBHOTO Yyaapa B OECKOHEYHYH yNnpyro—
IJTACTHYECKY O 6aniky MOCpeacTBOM TMONYyOeCKOHEMHOLI YNPYroso CTepxH. YuurbBatotcs 3ddexTsl
MHEpUMM BpalueHHa W gedhopPMalM¥ CABMTa, B ONPEACTAIOUWIMX ypPaBHEHMAX OBHxeHusi Oanxu. dns
ONUCAHUsl MOBEJEHUSA MATEepUalia, UCHOJB3YETCH MOME/b, HE3ABUCHMAs OT CKOPOCTH dedopmaluu H
OCHOBAHHASA HA IIOHATHUSAX, IOX0XUX HA IPUMEHSEMBIX B KBE3UCTAIMYECKOH NIIACTUYHOCTH. Y YN THIBAETCH
B3aHMOAENHCTBHE MEXIY MOMEHTOM M CuJoil caeura. Ucmonbiyercs kpurepuil ynpouHenus aedop-
MallMd, OCHOBAHHBIA HA KBAa3HCTATHYECKOW 3aBHCHMMOCTH MOMEHT-KDHMBM3HA 1718 4HCTOro wu3ruba.
Xapakrep nepopmallid BO BPEMEHM, MOJACYHTAH MPH UCMOIL30BAHUM 3TOH TEOPUH, CXOAUTCH Han-
nexyumM obpa3oM, ¢ pelylabTaTaMu IMONYYEHHBIMU M3 3KCIEPUMEHTOB Ha AMlOMHUHHUEBBIX OankKax.

3areM, CpaBHMBAIOTCH pEUIEHHS C NPEANOCLIIKAMM, OCHOBAHHBIMU HA Teopuu 6HaNOK. B pamMKax.
WAeanbHO#| XKeCTKOM MIaCTHIOHOCTH.



